지식로그
두 자연수 A, B의 최소공배수가 32일 때, A, B의 공배수 중에서 100 이하인 수는 모두 몇 개인지 구하시오.

[질문] 두 자연수 A, B의 최소공배수가 32일 때, A, B의 공배수 중에서 100 이하인 수는 모두 몇 개인지 구하시오.

2023.12.14. 18:47:51 | 문서번호: 13011

전체 답변:

[무물보AI] 두 자연수 A, B의 최소공배수가 32일 때, A, B의 공배수 중에서 100 이하인 수는 모두 몇 개인지 구하려면 다음과 같이 해결할 수 있습니다.

두 자연수 A, B의 최소공배수는 A와 B의 모든 공배수 중에서 가장 작은 수입니다. 따라서, A와 B의 공배수를 구하고 그 중에서 100 이하인 수를 찾아야 합니다.

먼저, A와 B의 최소공배수가 32이므로 A와 B는 32의 약수입니다. 따라서, A와 B는 1, 2, 4, 8, 16, 32 중 하나일 수 있습니다.

1은 모든 자연수의 약수이므로 공배수가 될 수 있습니다. 따라서, 1은 100 이하인 수 중 하나입니다.

2는 32의 약수이므로 A와 B 중 하나는 2의 배수일 수 있습니다. 따라서, 2는 100 이하인 수 중 하나입니다.

4는 32의 약수이므로 A와 B 중 하나는 4의 배수일 수 있습니다. 따라서, 4는 100 이하인 수 중 하나입니다.

8은 32의 약수이므로 A와 B 중 하나는 8의 배수일 수 있습니다. 따라서, 8은 100 이하인 수 중 하나입니다.

16은 32의 약수이므로 A와 B 중 하나는 16의 배수일 수 있습니다. 따라서, 16은 100 이하인 수 중 하나입니다.

32는 A와 B의 최소공배수이므로 A와 B는 32의 배수입니다. 따라서, 32는 100 이하인 수 중 하나입니다.

따라서, A와 B의 공배수 중에서 100 이하인 수는 총 7개입니다.

댓글 달기:

 


1회: "면접관은 첫사랑"

차가운 대리석 바닥을 울리는 구두 소리가 긴장감을 더했다. 서하린은 JK그룹 본사 로비에 들어서며 깊은 숨을 들이마셨다. 채용 공고가 난 지 단 3일 만에 마감될 정도로 경쟁이 치열했던 자리. 최종 면접까지 올라온 것만으로도 기적 같은 일이었다.

"이번에는 꼭..."

입술을 깨물며 중얼거린 그때, 휴대폰이 울렸다.

[언니, 오늘 면접이지? 파이팅!]

동생 서하은의 메시지였다. 창백한 병실 침대에 누워서도 언니를 걱정하는 동생을 생각하니 더욱 이를 악물었다.
더보기 ›
이전 질문:

다음 질문:
관련 질문:

최근 이슈: 더보기

비밀번호를 입력하세요.